漾濞MS6.4地震前震源机制一致性参数演化特征

来源:优秀文章 发布时间:2023-02-16 点击:

樊文杰

1 云南省地震局,昆明市北辰大道148号,650224

强震是地下介质受到长期构造应力作用,最终在应力集中区突然破裂释放的结果[1],而中小地震震源机制解作为震源附近应力场的重要指标[2],不仅能够反映震源断层的力学特征,还可以反映地震前后震源区域应力状态的变化。已有研究表明,强震发生前的小震震源机制有趋于一致的现象,震源机制一致性可以用来描述地震活动[3],表明震源区域一定范围内的应力正逐渐集中,有助于强震的孕育发生。为研究震前震源机制的一致性特征,国内外学者提出多种分析计算方法[4-13],结果表明,震源机制一致性参数所反映的应力状态变化能够用来捕捉强震前的震兆信息,可作为强震危险性的有力判据。

根据中国地震台网中心测定,北京时间2021-05-21 21:48:34云南省大理州漾濞县发生MS6.4地震,震中位置为25.67°N、99.87°E,震源深度8 km,是云南省内自2014-10-07景谷6.6级地震后的首次超6级强震。由于该地震前震现象明显,为典型的前震-主震-余震型地震序列[14],因此分析地震前后应力变化特征对于地震预报具有重要意义。此外,漾濞地震所处的滇西北地区近年来5级地震活动十分频繁,发生了2013年洱源MS5.5和MS5.0双震、2016年云龙MS5.0等中强地震。为研究地震前的应力状态及小震震源机制一致性特征,本文根据Michael等[10-12]提出的方法对漾濞及周边地区中强地震前震源机制一致性参数平均Misfit角进行计算,并在此基础上探讨应力变化与地震间的关系,为研究区中强地震危险性研判提供理论依据。

1.1 数据

本文收集整理不同机构发布的漾濞地震序列相关震源机制解数据,其中主震及最大余震的震源机制解来源于美国地质调查局USGS,其他地震序列结果来源于中国地震科学实验场基于人工智能开发的EarthX智能地动系统,该系统可利用震后波形实时计算产出结果。段梦乔等[15]将EarthX智能地动计算结果与利用CAP方法计算的结果进行对比后发现,2种方法得到的震源机制解较为一致,由此验证了智能地动产出结果的可靠性。本文收集包括前震序列在内的42次MW≥3.0地震事件的震源机制解结果,研究时段为2021-05-18~06-05。同时还收集了2000年至漾濞地震发生前距震中100 km范围内MS≥3.0历史地震的震源机制解数据,包括徐彦[16]、赵小艳等[17]及中国地震科学实验场大理中心利用CAP方法计算获得的共172条数据。2种震源机制解合计214条数据的空间分布情况如图1所示。

1.2 方法

Michael[10-11]提出将非线性问题[18-19]转化为线性问题反演应力张量的线性反演算法:假设断层滑动矢量平行于施加在断层面上的平均剪应力方向,将二者之间的夹角β作为假定应力张量和滑动矢量差别的评判标准。反演时随机选取震源机制2个节面中的1个进行计算,利用数据集内的多组数据共同约束,最终反演获得最优应力张量。Michael等[12]研究表明,随着非均匀性的增加,应力场均匀分量逐渐减少,此时可用每个节面上观测到的滑动方向和最优应力张量预测的剪应力方向之间夹角β的平均值来表示应力场的均匀程度。若应力场均匀,说明可用1个统一的应力张量来解释观测到的震源机制解,也说明震源机制趋于一致。本文采用平均Misfit角作为表示震源机制一致性程度的参数,平均Misfit角越小,表明震源机制一致性程度越高;
反之,则表明震源机制一致性程度越低。

2.1 震源机制解类型

参照世界应力图划分标准[20],根据P、B、T三轴的倾伏角大小将震源机制解分为6类:正断型(NF)、正走滑型(NS)、走滑型(SS)、逆走滑型(TS)、逆断型(TF)和不确定型(UD)。根据分类准则,对研究区震源机制解数据进行划分并归类统计(图1)。为便于统计和绘图,将正断型和正走滑型统称为正断型,将逆断型和逆走滑型统称为逆断型。结果表明,研究区内的震源机制解主要为走滑型,占总数的56%;
其次为正断型,占总数的28%;
逆断型和不确定型各占总数的8%。

漾濞MS6.4地震具有明显的前震现象,为更直观地对比主震前后震源机制解的差异,将漾濞地震序列震源机制解按发震时间先后顺序进行排列,结果见图2(a)(图中沙滩球上的数字为各震源机制和主震震源机制间的最小空间旋转角)。图2(b)为地震序列震源机制解的空间分布情况。从图2可以看出,主震发生前,包括MS5.6(MW5.2)地震在内的前震序列震源机制解基本均为走滑型,与主震应力类型一致,仅有1个地震为正断型;
主震发生后,MS5.2(MW5.1)最大余震出现明显的正断分量,随着余震序列的不断发展,震源机制类型也逐渐增多,正断型、不确定型地震不断增加,还伴随有1个逆断型地震的发生。此外,利用震源机制解最小空间旋转角[21]计算得到的前震序列地震和主震的震源机制差别较小,最小空间旋转角大多在30°以内;
而余震序列地震和主震的震源机制差别较大,绝大部分最小空间旋转角大于30°,说明前震和主震的震源机制一致性较好,而余震和主震的震源机制一致性相对较差。

2.2 P、T轴分布特征

虽然震源机制解3个应力轴上的平均统计结果与构造应力方向并不完全一致[22],但应力轴的优势方向在一定程度上代表了构造应力作用下区域应力逐渐集中的方向。图3为研究区震源机制解P、T轴方位分布情况及统计玫瑰图(线段的长短代表倾伏角的大小,线段越长代表倾伏角越小,反之则倾伏角越大),可以看出,P轴方位分布范围约为N30°E~N40°W。距离漾濞震中较远的外围地区P轴分布较为零散,且P轴方位和倾角具有一定差异,震中附近地区P轴方位主要为NNW-SSE向。T轴方位分布范围约为N50°E~E20°S,距离漾濞震中较远的外围地区T轴优势分布现象不明显,震中附近地区T轴方位主要为NEE-SWW向。虽然应力轴方位在空间上存在部分差异,但总体表现出一定的优势分布特征。已有的构造应力场研究表明,滇西北地区最大主应力方位为NNW向[23-24],这与研究区地震P轴优势分布方位一致,说明地震明显受制于区域构造应力场,且震源机制解类型也与该地区以走滑型为主的断裂构造特征相同,如维西-乔后断裂等[25]。

图3 P轴和T轴方位分布及统计玫瑰图Fig.3 The azimuth distribution and statistics rose diagram of P axes and T axes

为研究震源机制一致性参数平均Misfit角的变化范围,分别选取距漾濞地震震中50 km和100 km内的震源机制解资料,利用ZMAP软件[26],以10个地震为窗长、5个地震为步长进行滑动计算。图4为研究区不同范围内平均Misfit角随时间的演化进程,表1为研究时段相应范围内发生的MS≥5地震统计。

由图4及表1可以看出,在震中距50 km范围内,2020年初至漾濞地震发生前,震源机制一致性参数平均Misfit角出现下降现象;
漾濞地震发生后,平均Misfit角时序曲线开始转折回升。此范围内其他中强地震发生前后也出现类似现象,如2013年洱源MS5.5和MS5.0双震、2017-03-27漾濞MS5.1地震发生前平均Misfit角时间序列曲线都有一定程度的下降,说明上述地震发生前小震震源机制均有趋于一致的现象出现。由

图4 研究区不同范围内平均Misfit角随时间变化情况与MS≥5地震M-T图Fig.4 The variation of average Misfit angle with time and M-T map of MS≥5 earthquakes in research region

表1 2000~2021年研究区MS≥5地震信息

图4(b)可见,中强地震发生前约1~2 a震源机制也有趋于一致的现象出现。2008年起该范围内震源机制一致性参数平均Misfit角出现多次下降过程,下降期间同时伴有数次MS5.0以上地震发生。例如2009年平均Misfit角下降期间发生了宾川MS5.0地震,洱源MS5.5和MS5.0双震发生前平均Misfit角均存在小幅度下降现象。2015年底至2017年平均Misfit角快速下降,即震源机制逐渐趋于一致,表明区域应力水平不断升高,期间发生的昌宁MS5.1、云龙MS5.0和漾濞MS5.1三次5级地震也验证了该现象。2019年中旬至2021年中旬平均Misfit角大幅度、长时间下降后发生了漾濞MS6.4地震。整体上看,研究区内各中强地震发生前平均Misfit角均出现下降现象,2008年之后的平均Misfit角与之前相比,整体上处于相对较低的水平,期间研究区5级以上地震表现为群体连发的活动形式。由于震群型和主余型地震无显著前震活动,数据资料难以满足单个地震序列的计算要求,且不同类型的地震样本数量有限,给不同序列类型地震前震源机制一致性参数的变化特征异同类比分析造成一定困难,因此从现有计算结果来看,不同类型地震前震源机制一致性变化特征差别不大。从图4还可以看出,不同震中距范围内的平均Misfit角差别不大,这可能与地震数据较少有关。

虽然并不是每一次平均Misfit角下降现象均能对应后续5级以上中强地震,如2008年下降期间该地区未发生5级以上中强地震,仅在2008-02-18发生漾濞4.8级地震,但该地区5级以上地震前平均Misfit角都出现了下降现象,即震前震源机制趋于一致。其中永胜MS6.0地震受限于样本数量,无法获得震前平均Misfit角的具体变化形态。前人研究表明,在考虑震源机制解数据计算误差的前提下,若平均Misfit角大于40°,则认为应力状态在时间和空间上具有非均匀性[12-13]。不同半径的计算结果也表明,漾濞地震等中强地震基本都发生在平均Misfit角低于40°期间,此时应力场处于相对均匀的状态,震源机制一致性程度较高,应力水平较高。这种现象在2008年后尤为显著,该时段平均Misfit角长期低于40°,研究区5级以上地震的群体活动也十分突出;
平均Misfit角大于40°时,应力场处于非均匀状态,期间研究区内并无5级以上地震发生。此外,平均Misfit角逐渐升高可能表明区域应力集中调整即将结束、震源机制一致性较低、震源机制解类型更加复杂紊乱、强震危险性逐步降低。如漾濞MS6.4地震后平均Misfit角开始逐渐回升(图4(c)),余震和主震的震源机制解差异也较大,类型多样(图2),后期再无5级以上强余震发生。

大量震例研究和岩石物理实验表明,震级-频度关系中的b值具有清晰的物理意义,其数值与压应力大小呈负相关[27-29]。为进一步考察研究区内中强地震前应力状态变化情况,本文选取2000-01-01~2021-06-30云南地震台网速报目录计算研究区的b值。由于根据G-R关系得到研究区该时段内的地震目录最小完整性震级为ML1.8,因此本文基于研究时段内所有ML≥1.8地震的目录资料,采用最大似然法[30-31]计算研究区内b值随时间的变化情况,并与同样反映应力状态的震源机制一致性参数平均Misfit角进行对比分析。选用200个地震样本作为窗长、20个地震样本作为滑动步长,根据选取的地震目录资料计算得到研究区内b值随时间的变化曲线(图5),并标注2000年以来研究区内发生的MS≥5地震,其中红色虚线为均值线。从图5可以看出,研究区内5级以上地震发生前,b值都存在不同幅度的下降;
2次6级地震发生前,b值下降速率和幅度相对较大。2013~2017年b值多次下降且整体数值相对较低,下降期间发生了洱源MS5.5等多次5级地震,处于地震连发状态;
2021年漾濞MS6.4地震发生前b值快速下降,主震发生后b值开始波动上升。这一现象与震源机制一致性参数平均Misfit角的变化形态类似。

图5 研究区内b值随时间的变化情况与MS≥5地震M-T图Fig.5 The variation of b value with time and M-T map of MS≥5 earthquakes in research region

综合震源机制一致性参数和b值的变化情况可知,漾濞地震及周边地区的震源机制一致性参数平均Misfit角和b值与应力状态之间存在一定的联系,二者均能反映该地区应力场的变化情况,同时研究区中强地震多发生在震源机制一致性参数和b值下降的过程中。

本文基于收集到的漾濞地震序列及周边历史地震震源机制解数据,分析震源机制类型和应力轴分布特征,并在此基础上研究震源机制一致性参数的时间变化特征与中强地震活动的关系。结果表明,漾濞地震序列及震源附近历史地震的震源机制解类型以走滑型为主,其次为正断型。漾濞地震发生前震源机制解类型与主震类型基本一致,大都为走滑型地震,余震类型则会随序列的不断发展而变得复杂多样,正断型和不确定型等不同类型的地震逐渐增多。

不同震中距范围内的震源机制一致性参数平均Misfit角的时间演化特征显示,漾濞地震及周边中强地震发生前平均Misfit角均有一定程度的下降,说明地震发生前小震震源机制趋于一致,这可能是中强地震的前兆信息。震源机制趋于一致,表明构造应力场的控制作用增强,区域应力开始集中,可能意味着将有强震发生。研究发现,研究区内地震基本都发生在平均Misfit角低于40°的情况下,表明40°的平均Misfit角可作为该地区强震危险性的研判指标。当平均Misfit角低于40°且开始下降时,可能表明地震正在孕育成核、强震发生时间逐渐临近、强震危险性逐步提高;
地震发生后平均Misfit角转折回升,可能表明区域应力释放调整后趋于稳定,震源机制一致性降低,地震以离散的中小地震形式发生,强震危险性有所减弱。此外,研究区内b值的时间变化特征与震源机制一致性结果类似,在漾濞地震及周边中强地震发生前,b值也明显下降。这一方面印证了震源机制一致性参数平均Misfit角结果的可靠性,另一方面也表明b值可以反映地震前后的应力状态变化,可用于获取中强震的震兆信息。

由于本文仅针对漾濞地震震源及周边地区展开研究,研究区范围较小且地震样本数量有限,因此对震源机制一致性演化特征的分析具有一定的局限性。对于地震活动频繁且复杂的云南地区,若要利用震源机制一致性参数变化来进行地震风险性评估,则需要更多的震例回溯和研究来确定不同地区具体的计算参数和判定规则,为强震危险性研判提供更多可靠依据。

致谢:本文图件采用GMT软件绘制,震源机制一致性参数利用Max Wyss等开发的ZMAP软件计算获得。中国地震科学实验场大理中心和云南省地震局付虹研究员提供了部分历史地震震源机制解数据,漾濞地震序列部分震源机制解来自中国科学技术大学和中国地震局地震预测研究所联合开发的EarthX智能地动系统。在此一并表示感谢。

猜你喜欢 主震漾濞强震 7.0级强震袭击菲律宾环球时报(2022-07-28)2022-07-28主余震序列型地震动下典型村镇砌体结构抗震性能分析自然灾害学报(2022年2期)2022-05-10强震作用下崩塌滚石冲击耗能损伤演化分析水文地质工程地质(2022年2期)2022-04-13漾濞书协抗震作品选核桃源(2021年5期)2021-09-14——谨以献给漾濞5.21地震救援的消防指战员">漾濞不会忘记你
——谨以献给漾濞5.21地震救援的消防指战员核桃源(2021年5期)2021-09-14漾濞书协作品选核桃源(2020年2期)2020-05-22我与漾濞核桃源(2019年2期)2019-11-13花莲强震!环球时报(2018-02-08)2018-02-08宁夏及邻区M S≥5.0地震的前震和广义前震特征分析中国地震(2017年1期)2017-09-04强震的威力小星星·阅读100分(高年级)(2016年10期)2016-09-10推荐访问:震源 演化 地震
上一篇:高精度重力测量的潮汐改正软件及其评估分析
下一篇:生物多样性产品价值实现的路径与制度安排——国外生物多样性银行经验借鉴与启示

Copyright @ 2013 - 2018 优秀啊教育网 All Rights Reserved

优秀啊教育网 版权所有