紫色土区不同秸秆还田量对土壤酶活性的影响

来源:优秀文章 发布时间:2022-12-04 点击:

刘东海,乔 艳,李 晓,李双来,张 智,李 菲,胡 诚*

(1.湖北省农业科学院植保土肥研究所,湖北 武汉 430064;
2.广水市农业科学研究所,湖北 广水 432700)

作物秸秆富含有机质及各种营养元素,是重要的有机资源之一[1-2],长期作物秸秆还田影响土壤有机碳[3-4]、有机氮[5]、pH[6]和有效磷[7]等理化性质以及土壤酶活性[8]。土壤酶是由土壤微生物合成和分泌的,是有机质形成和分解的催化剂[9],在秸秆分解过程中发挥着不可替代的作用[10]。土壤酶活性是评价土壤质量和养分转化能力的重要指标[11],可分为水解酶和氧化酶,前者负责获取C、N和P以支持初级新陈代谢,后者可降解木质素等顽固化合物[12-13]。Wei等[14]施用农作物秸秆提高了磷酸酶、脲酶和转化酶活性水平,发现酶活性水平与土壤有机质含量有关。Zhao等[15]通过两年秸秆还田田间试验表明,0~15 cm土层土壤脲酶、转化酶和过氧化氢酶活性分别提高11.4%、41.0%和12.9%。张鑫等[16]发现相比于单施化肥处理,秸秆还田配合施用化肥处理显著提高了土壤 β-葡萄糖苷酶、纤维二糖苷酶、β-木糖苷酶、α-葡萄糖苷酶的活性。Zhang等[8]发现随着秸秆还田量的增加,土壤酶活性呈现增加的趋势。Zhao等[17]发现高秸秆还田量改变了微生物群落结构,提高了大多数水解酶活性和轻组分有机碳和重组分有机碳。李倩等[18]在玉米旱作栽培条件下秸秆覆盖量为9000 kg/hm2时,碱性磷酸酶活性最高。Wang等[19]在玉米秸秆还田量为9000 kg/hm2时提高了旱地土壤肥力、作物产量和水分利用效率。

紫色土区耕地面临土层浅薄化、养分贫瘠化等土壤肥力退化问题,秸秆还田有助于紫色土区退化旱地肥力恢复与重建[20]。为了探明长期秸秆不同还田量下该区土壤中与C、N和P转化相关的酶活性及其驱动因子,本研究依托中国科学院盐亭紫色土农业生态试验站12年的长期定位试验,采用微孔板荧光法测定了与土壤C、N和P转化相关的11种酶活性和土壤理化性质,利用相关性分析和冗余分析(RDA)探索土壤酶活性和土壤理化性质的内在关系,以期解析长期不同秸秆还田量下影响土壤酶特征的关键理化因子,为科学合理利用秸秆、培肥土壤、提高土壤质量提供理论依据。

1.1 研究区概况

本研究依托四川盆地中北部盐亭县林山乡的中国科学院盐亭紫色土农业生态试验站(105°27′E,31°16′N),至今已经持续12年。该区地处涪江支流弥江、湍江的分水岭上,海拔400~600 m。属中亚热带湿润季风气候,气候温和、四季分明,年均气温17.3 ℃,极端最高气温40 ℃,极端最低气温-5.1 ℃,≥10 ℃年积温5000~6000 ℃,无霜期297 d,年平均降水量826 mm,降雨主要集中于夏季。田间持水量28.1%~38.3%,凋萎湿度5.4%~7.7%,为典型旱作土壤,厚度为20~60cm。2011年CK处理有机质12.10 g/kg,全氮0.87 g/kg,有效磷11.00 mg/kg,速效钾106.50 mg/kg,pH 8.34。

1.2 试验设计

玉米小麦轮作,试验采用完全随机区组设计,4个处理:(1)秸秆不还田(CK);
(2)秸秆30%还 田(RMW30);
(3)秸 秆50%还 田(RMW50);
(4)秸秆100%还田(RMW100)。每个处理3个重复,共12个小区,小麦或玉米秸秆粉碎<10 cm,均匀覆盖后,翻耕还田,小区面积均为10 m×6 m,各处理的施肥管理均一致。化肥施用量:氮肥为碳铵(N 17%)和尿素(N 46%)、磷肥为过磷酸钙(P2O512%)、钾肥为氯化钾(K2O 60%)。玉米小麦轮作下施肥情况,玉米季每公顷纯养分N∶P∶K=150∶90∶36,小麦季每公顷纯养分N∶P∶K=130.5∶72∶45。玉米施肥分为两次,底肥和追肥比例为3∶2,底肥施碳铵,追肥施尿素。小麦季节,施肥1次,碳铵、过磷酸钙和氯化钾一次性基施。

1.3 样品采集和测试方法

2019年小麦收获后,每个小区按“S”形取样法取6 个点混合为1个土样,深度0~20 cm。土样装入无菌密封袋,后置于保温箱带回实验室,一部分立即测定土壤酶活性,另一部分风干测定理化性质。

采用96微孔酶标板荧光分析法[21]测定土壤磷酸酶(Phos)、硫酸酯酶(Sul)、β-葡糖苷酶(βG)、β-纤维二糖苷酶(CBH)、纤维素酶(CL)、表示β-木糖苷酶(βX)、α-葡糖苷酶(αG)、乙酰氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)、酚氧化酶(PhOx)和过氧化物酶(Perox)活性。取 1.00 g 新鲜土壤样品,加入100 mL 50 mmol/L的醋酸钠缓冲溶液(pH 为土壤样品 pH 的平均值,如样品之间 pH 相差较大,需配置不同缓冲溶液),用磁力搅拌器使其均质化后移取 200 μL 悬浮液于酶标板中,以缓冲液为空白,4-甲基羟基香豆素(MUB)为标准物,LAP采用 7-氨基-4-甲基香豆素(AMC)为标准物,不同酶加入对应的底物,25 ℃黑暗培养 4 h 后(酸性土壤需加入 50 μL 1 mol/L的NaOH 溶液终止反应),在激发光 365 nm、发射光 450 nm 的条件下,用 Synergy H/M 酶标仪测定其荧光度,酶活性以每克每小时干物质产生底物的纳摩尔数[nmol/(g·h)]计算。试剂购于Sig-ma-Aldrich Co. Ltd.公司。

土壤理化性质采用常规方法测定[22],土壤 pH采用复合电极测定,水土比为 2.5∶1;
土壤有效磷采用碳酸氢钠溶液浸提-钼锑抗比色法测定;
土壤速效钾采用醋酸铵溶液浸提-原子吸收分光光度计测定。有机质采用重铬酸钾容量法测定,碱解氮采用碱解扩散法测定。

1.4 数据处理分析

试验数据采用 Excel 2019处理数据,利用 SPSS 20.0进行单因素方差分析(one-way ANOVA)和最小显著性差(LSD)进行多重比较(α=0.05)。采用Pearson 法对土壤理化指标与酶活性进行相关分析。采用 Canoco 5.0进行冗余分析(RDA)。图表数据均是平均值±标准偏差。

2.1 秸秆还田对土壤理化性质的影响

与CK相比,RMW30、RMW50和RMW100处理中土壤pH分别显著提高了0.60、0.56和0.53个单位,碱解氮含量分别增加了9.24%、11.19%和18.14%,速效钾含量分别增加了1.28%、41.78%和63.32%。仅RMW100显著增加了土壤碱解氮、速效钾和有机质含量,其中有机质含量显著增加了15.70%(表1),说明秸秆全量还田有助于提升土壤养分含量。

2.2 秸秆还田对土壤酶活性的影响

与CK比较,秸秆还田均降低了β-纤维二糖苷酶、纤维素酶、酚氧化酶和过氧化物酶活性,其中β-纤维二糖苷酶活性显著降低(表2);
随着秸秆还田量的增加,β-纤维二糖苷酶活性呈现降低趋势,MW100处理中β-纤维二糖苷酶活性显著降低了 45.00%。秸秆还田均提高了磷酸酶、硫酸酯酶、β-葡糖苷酶、α-葡糖苷酶、β-木糖苷酶、乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶活性;
RMW30、RMW50和MW100处理中磷酸酶活性分别显著提高了112.4%、50.40%和67.63%,β-葡糖苷酶活性分别显著提高了107.90%、95.41%和64.70%,乙酰氨基葡萄糖苷酶活性显著提高了51.3%、28.21%和28.20%。

表 1 长期秸秆还田对土壤理化性质的影响

表 2 长期秸秆还田对土壤酶活性的影响 [nmol/(g·h)]

2.3 秸秆还田下土壤酶活性与理化性质的相关性

速效钾与碱解氮呈显著正相关,与有机质和有效磷呈极显著正相关。pH与磷酸酶、硫酸酯酶、β-葡糖苷酶、亮氨酸氨基肽酶极显著正相关,与β-木糖苷酶和α-葡糖苷酶显著正相关,与β-纤维二糖苷酶显著负相关;
碱解氮与亮氨酸氨基肽酶显著正相关(表3)。

纤维素酶、酚氧化酶与过氧化物酶三者间两两极显著正相关。亮氨酸酶与乙酰氨基葡萄糖苷酶、β-木糖苷酶和α-葡糖苷酶四者间两两极显著正相关。磷酸酶与硫酸酯酶、β-葡糖苷酶三者间两两极显著正相关,三者均与亮氨酸酶、乙酰氨基葡萄糖苷酶、β-木糖苷酶和α-葡糖苷酶分别显著正相关。

RDA分析可以看出,长期不同秸秆还田量对土壤酶分布产生差异,CK 处理分布于第四象限;
RMW30处理分布比较分散,在第一、三象限;
RMW50处理主要分布在Y轴上半轴,而 RMW100处理主要分布在第三象限(图1)。

RDA 前2个排序轴保留了土壤酶活性数据总方差的 78.10%,即 5个环境因子在前2个轴中累计解释了土壤酶活性特征的78.10%。pH与Phos、Sul、βG、LAP、NAG、βX和αG正相关,pH与CL、PhOx、Perox、CBH负相关,OM与各个水解酶近似垂直,相关性小,该结果与相关分析(表3)的结果一致。

各试验处理点在 RDA 图上的分布及与土壤酶的位置关系可以看出,秸秆不还田(CK)处理 CBH 活性较高,RMW30 处理主要提高了 Phos、Sul、βG和NAG 活性,RMW100 处理主要提高了 βX和αG 活性。土壤酶变化主要由土壤pH驱动,解释了方差变异的 60.20%,达到显著水平。

图1 土壤酶活性与土壤指标的冗余分析(RDA)

表 3 土壤酶和理化性质的相关性

3.1 不同秸秆还田量对紫色土土壤速效养分的影响

农作物秸秆是作物生长所需的C、K和微量元素的重要来源,在还田后有助于维持土壤养分平衡[23]。本研究显示,与CK处理比较,仅RMW100处理显著提高了土壤有机质、碱解氮、有效磷和速效钾含量,这与张志毅等[24]全量还田提高土壤养分含量的结论一致。随着秸秆还田量的增加,有机质含量呈现增加的趋势,与已有研究[25-26]的结论一致。秸秆还田导致土壤有机碳的净累积,从而提高土壤有机质含量[27-29]。土壤碱解氮的提高,可能是因为施用秸秆可以促进土壤N以适合作物需要的速度转化为缓效性N源,从而提高N效率[30]。华萃等[31]研究指出,2011年不同秸秆还田量对紫色土土壤有机质、有效磷、pH的影响不显著,唯有速效钾含量随秸秆还田量的增加显著提高,pH值范围在8.30左右。同一试验点,本研究中不同秸秆还田量处理土壤pH 7.93平均降低了0.37,与张聪等[6]秸秆还田随着年限的延长土壤pH出现下降趋势的结论一致。不同秸秆还田量处理平均pH高于CK处理,可能是由于秸秆还田有助于在适当范围内有效调节土壤pH,以平衡土壤养分的固定和补给[32]。同时RMW100处理显著提高了土壤有机质、碱解氮、有效磷和速效钾含量,与Akhtar等[7]结论一致,他们指出与秸秆不还田相比,全秸秆还田0~40 cm土层土壤速效氮、有效磷和速效有机碳平均水平分别提高了31.9%、32.0%和32.4%,说明秸秆全量还田有利于提高土壤肥力。

3.2 不同秸秆还田量对紫色土土壤酶活性的影响

本研究中纤维素酶与酚氧化酶、过氧化物酶两两极显著正相关,秸秆不同还田量处理均降低了β-纤维二糖苷酶、纤维素酶、酚氧化酶和过氧化物酶活性,与李森[33]在稻麦轮作下秸秆还田处理均能不同程度提高纤维素酶、β-葡萄糖苷酶、酚氧化酶和过氧化物酶活性的结论不一致,可能是不同的耕作方式、土壤类型和秸秆种类等因素导致的差异。关于酚氧化酶和过氧化氢酶活性的下降,可能与土壤pH下降有关[34],亦或者是与土壤氮素的富集有关[35]。

张鑫等[16]指出,秸秆还田配施化肥处理显著提高了土壤 β-葡萄糖苷酶、纤维二糖苷酶、β-木糖苷酶、α-葡萄糖苷酶的活性。本研究与其不同之处是秸秆还田降低了纤维二糖苷酶,随着秸秆还田量的增加,β-纤维二糖苷酶活性还呈现降低的趋势。本研究秸秆还田提高了磷酸酶和硫酸酯酶活性,磷酸酶可以加强酯和磷酸酐的水解,释放出植物可直接使用的磷酸盐[36-38],提高土壤有效磷含量。秸秆还田还提高了乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶活性,可能是因为秸秆还田导致有机碳的积累[6],间接造成土壤N元素的相对亏缺,当矿质氮浓度较低的情况下,参与N循环的LAP 和NAG的活性被激发,从而获取更多有机氮[39-41]。

3.3 紫色土土壤酶活性分布特征及其驱动因子

本研究通过对与C、N、P和S循环相关的酶进行冗余分析看出,长期不同秸秆还田量导致土壤酶分布出现差异。土壤pH是紫色土土壤酶变化的主要影响因子,而夏文建等[42]认为土壤全氮和微生物生物量碳是红壤稻田酶活性关键决定因子,说明不同土壤类型对酶活性存在不同影响。

紫色土区长期秸秆还田提高了土壤养分含量和土壤pH。与秸秆不还田(CK)比较,RMW100处理土壤pH、有机质、碱解氮和速效钾分别显著提高了7.19%、15.70%、18.14%和63.32%。pH与大部分土壤酶存在显著相关性,冗余分析显示,秸秆还田条件下,土壤pH是土壤酶变化的主要影响因子,解释了方差变异的 60.20%,达到显著水平。因此,秸秆全部还田是紫色土区提升土壤质量较适宜的管理措施。

猜你喜欢 糖苷酶氨基速效 茶条槭叶化学成分的分离鉴定及其α-葡萄糖苷酶抑制活性研究中草药(2022年20期)2022-11-15高产糖苷酶非酿酒酵母菌株筛选、鉴定及其发酵过程中酶活性变化食品科学(2022年20期)2022-10-313%甲氨基阿维菌素微乳剂注干剂配方研究安徽农学通报(2022年6期)2022-04-07氨基葡萄糖有什么作用文萃报·周五版(2021年42期)2021-10-28如何合理使用速效救心丸?养生阅刊(2021年5期)2021-06-03糖尿病患者能吃氨基葡萄糖吗家庭百事通·健康一点通(2020年11期)2020-11-30寿县主要耕作区耕地质量调查与评价安徽农学通报(2020年13期)2020-07-24β—葡萄糖苷酶及其应用炎黄地理(2019年5期)2019-10-20浅谈β-葡萄糖苷酶及其在食品工业中的应用丝路视野(2018年15期)2018-05-14别把急救药当常用药中老年健康(2016年12期)2017-01-18推荐访问:秸秆 土壤 活性
上一篇:荒漠绿洲麦区小麦白粉病发生危害及药效评价
下一篇:水泵加压与有压重力混合输水系统泵阀联合优化调度研究

Copyright @ 2013 - 2018 优秀啊教育网 All Rights Reserved

优秀啊教育网 版权所有