激光冲击E690高强钢Ostwald熟化现象的试验研究

来源:优秀文章 发布时间:2022-12-03 点击:

解朋朋,曹宇鹏,2,3,花国然,杨聪,朱鹏飞

激光冲击E690高强钢Ostwald熟化现象的试验研究

解朋朋1,曹宇鹏1,2,3,花国然1,杨聪1,朱鹏飞1

(1.南通大学 机械工程学院,江苏 南通 226019;
2.南通理工学院 3D打印技术研究所,江苏 南通 226001;
3.南通中远海运船务工程有限公司,江苏 南通 226006)

研究功率密度对激光冲击E690高强钢表面Ostwald熟化现象的影响。根据理论分析激光冲击金属材料与产生调幅分解的内在联系,提出因激光冲击强化产生 Ostwald熟化现象所需要的条件。使用场发式透射电镜(TEM)获取激光冲击E690高强钢试样表面微观组织结构和选区电子衍射花样,观测不同功率密度的TEM形貌相中晶粒尺寸的变化特征,以及Ostwald熟化现象验证。通过TEM形貌像可以看出,E690高强钢基材是由铁素体层与渗碳体层交替重叠组成的珠光体形貌,在激光冲击强化作用下,发生了晶粒细化,薄层渗碳体逐渐消失,电子衍射花样逐渐呈圆环状变化。当激光功率密度上升至4.07 GW/cm2时,持续细化的材料发生粗化,出现调幅分解组织,选区电子衍射花样中出现卫星斑,E690高强钢表面发生了Ostwald熟化现象。当激光功率密度达到5.09 GW/cm2,E690高强钢表层产生了纳米晶。较弱和较强的功率密度都不能使脱溶物到达发生Ostwald熟化机制的临界半径,Ostwald熟化现象与纳米晶相邻出现。

激光冲击强化;
Ostwald熟化;
E690高强钢;
晶粒细化;
微结构

当脱溶沉淀从晶粒中析出的时候,由于系统中众多的第二相颗粒导致界面的大量存在,使材料中界面能维持在较高的水平,而没有达到最低的能量状态,一些具有高能的因素使得小于临界面积的脱溶物逐渐消融,大于临界面积的粒子逐渐长大,导致界面面积的减小,这种现象一般称为粗化或者Ostwald熟化现象[1-4]。激光冲击强化作为一种具有强大潜力与应用前景的材料表层改性技术,是通过高能激光照射材料表面涂覆的吸收层,利用高压等离子体产生爆轰波的力学效应作用在材料表层,高应变率使材料发生晶粒细化甚至形成纳米晶,从而提高材料的硬度、抗磨损等性能[5-9]。笔者课题组前期开展了对E690高强钢一系列的研究,通过仿真与试验相结合的方式研究了激光冲击前后残余应力的变化,进行了不同功率密度激光冲击E690微结构的研究,从位错组态与晶粒细化角度研究了激光与材料相互作用形式,并且还开展了激光冲击微造型对减摩润滑的研究,并证明了激光冲击微造型提高了E690高强钢的摩擦学性能[10-12]。

同时,金属材料中Ostwald熟化吸引了世界上众多学者对其进行探索研究。杨洪波等[13]研究了GCr15轴承钢中渗碳体球化的长大机制,结果显示,渗碳体球化长大是由于Ostwald机制形成的。尹鸿翔等[14]通过原子探针层析技术和高分辨透射电子显微技术对铁素体中铜析出相进行了研究,根据时效时长的增长,铜析出相发生了粗化现象。Jiang等[15]综合研究了Ti-14Cu合金相对于Ti2Cu相在长期等温热暴露后的粗化行为,观察到合金在稳定粗化阶段受Ostwald熟化机制控制,随着稳定粗化,Ti-14Cu合金中高体积Ti2Cu相的存在增加了变形期间的有效滑移长度,并降低了塑性。Badykaa等[16]对时效过程中铸造奥氏体不锈钢的铁素体相发生调幅分解进行了研究,并且对比了不同元素析出相对调幅分解速度的影响。激光冲击加载的时间极短(纳秒级),而载荷极大(吉帕级),试样在激光冲击处理后发生了无需形核的调幅分解,进而诱发了Ostwald熟化现象。相对于由热处理引起Ostwald熟化现象,激光冲击强化引起的冲击相变极为复杂,研究其诱发的Ostwald熟化现象对激光冲击强化技术具有一定的理论意义。

本文对激光冲击E690高强钢晶粒尺寸影响过程进行分析,观察到晶粒尺寸不随着激光功率密度的增加而细化。在4.07 GW/cm2时,观察到了E690高强钢发生调幅分解,并导致Ostwald熟化现象的产生。通过理论与试验相结合,探究Ostwald熟化产生所需要的激光冲击能量。通过场发式透射电镜对不同功率密度下试样TEM形貌像和选区电子衍射进行分析,探究不同功率密度冲击后的E690高强钢中材料微观结构的变化,并验证了Ostwald熟化现象的存在。通过TEM形貌像验证Ostwald熟化现象前后试样表面晶粒尺寸变化,为科学研究激光冲击E690表层微观结构变化,优化海工平台装备性能提供理论基础。

激光作用在材料过程中具有纳秒级时间、超高的应变率与极高压力的特点。在高应变率影响下,塑性变形使材料温度升高,冲击波与金属材料彼此作用过程中,晶体缺陷增加使组织不稳定性升高,容易受到其他因素影响发生调幅分解,导致其Gibbs能变化,Δ为[17-18]:

式中:0为母相的平均成分;
Δ为激光冲击引起的成分起伏;
(0)为摩尔Gibbs能。

用三阶泰勒公式将(0+Δ)和(0-Δ)展开,最终可得:

式中:(2)(0)、(4)(0)分别为Δ的二阶导数和四阶导数。

分析式(2)可知,系统的Gibbs能与(2)(0)的取值相关,若(2)(0)>0,则系统的Gibbs能上升;
反之则减小。

在激光冲击作用下,塑性应变能向热能转变会使材料各相Gibbs能增加,直到合金的Gibbs能曲线具有负曲率时发生调幅分解。在激光冲击中形成调幅分解时不需要形核,这种相变不因界面的产生和迁移而发生,而是均匀分布在合金中。在E690高强钢表面晶粒调幅分解后期,材料处于较高能态,同时其调幅分解产物(脱溶物)的析出会使E690高强钢具有更大的界面能。为减小材料整体内部能量,小尺寸的颗粒可以进入一些粗大的粒子中,导致后者产生尺寸增大现象,即发生了“奥斯特瓦尔德熟化(Ostwald Ripening)”[18-19]。当E690高强钢在激光冲击加载过程中发生调幅分解时,将出现许多细小脱溶物,满足了Ostwald熟化发生条件,相邻晶粒尺寸差异大,界面能较大,将发生Ostwald熟化。

E690高强钢作为本次试验材料,其力学性能与元素组成(质量分数)为:C ≤1.72%,Si ≤0.45%,Mn ≤1.24%,Cr ≤0.74%,屈服强度为690 MPa,抗拉强度为835 MPa。通过线切割装置将E690高强钢加工成50 mm×50 mm×5.5 mm试样,使用240#—1200#砂纸对试样正反两面研磨至厚度为5 mm。吸收层使用150 μm厚的铝箔,约束层为去离子水。

激光冲击试验使用ND:YAG固体激光器(SGR系列,Beamtech公司,中国),激光冲击的具体参数:脉宽为10 ns,波长为1 064 nm,光斑直径为5 mm,分别采用3、3.89、5.43、8、10 J的能量,对应激光功率密度分别为1.53、1.98、2.77、4.07、5.09 GW/cm2,搭接率为70%,冲击次数为1次,冲击区域以光斑中心构成的20 mm×20 mm正方形,冲击区域与光斑搭接方案如图1所示。

先用分析纯乙醇浸泡试样,随后利用超声清洗并冷风风干。E690高强钢线切割后,从试样基体侧预减薄,然后经凹坑研磨,最后进行离子减薄,制成TEM薄膜试样。使用透射电子显微电镜(Tecnai G2 F20,FEI公司,美国)观察试样表层的微观形貌和选区电子衍射。

图1 激光冲击区域与光斑搭接方案

3.1 E690高强钢基体

E690高强钢基材结构的TEM形貌如图2所示。根据图2可以看出,E690高强钢基体结构是由薄层渗碳体和薄层铁素体2种相组成的混合物,亦称片状珠光体。珠光体中清晰可见板条状铁素体和薄层渗碳体交替排列,2种相分布距离在160~500 nm。

3.2 不同功率密度激光冲击下E690高强钢TEM形貌像分析与选区电子衍射标定

E690高强钢经过激光功率密度为 1.53 GW/cm2冲击后的 TEM 形貌像和对应的电子衍射花样如图3所示。由图3a可知,经过1.53 GW/cm2的激光冲击加载后,材料的渗碳体区域明显减少,铁素体和渗碳体两相边界逐渐模糊,但整体依旧呈现基体中类似的两相相互叠加而成的层状混合物,并且局部区域的晶粒开始出现细化现象。对该位置进行选区电子衍射,然后利用特征平行四边形法则[20-21]对电子衍射花样进行标定,如图3b所示。对比分析标定的结果可知,可以确定该区域呈现出珠光体与微量奥氏体的复相叠加,其发生衍射的晶面中晶带轴指数为[111]方向。衍射花样标定后可以看出,晶粒呈现出体心立方晶格,结合形貌像可以判断该衍射区域存在铁素体。对另一套衍射花样标定分析可以确定衍射晶面中晶带轴指数为[125]方向,表明此处晶粒呈现面心立方晶格。结合图3a和冲击相变的相关理论可推知,该衍射区域存在残余奥氏体。此外,图3b中仅有少数衍射斑向圆弧状变化,说明在1.53 GW/cm2的激光加载下,E690高强钢晶粒细化不明显。

图2 E690高强钢基体组织TEM形貌像

图3 激光功率密度1.53 GW/cm2时的TEM形貌和选区电子衍射图

E690高强钢经过激光功率密度为1.98 GW/cm2冲击后的TEM形貌像和对应的电子衍射花样如图4所示。由图4a可知,在1.98 GW/cm2的激光功率密度作用下,激光冲击的高应变率作用形成的马氏体组织相互挤压,致使原本形态改变,区域内位错分布均匀,原先的渗碳体薄层基本消失,剩下的渗碳体聚集在马氏体晶界处。图4b为图4a中的选取电子衍射图,标定分析该选区为2种相的叠加,其中晶带轴指数为[011]方向的衍射斑点表明此处晶粒为体心立方晶格,可以判断出该区域铁素体经激光冲击形成了BCC(体心立方)结构位错型马氏体。马氏体的晶体结构常为BCC、BCT(体心四方)结构。在塑性变形的过程中,FCC结构的奥氏体既可以转变成BCC结构的马氏体,也可以转变成BCT结构的马氏体,并且它们之间可以相互转化和共存[22]。晶带轴指数为[125]的衍射斑点表现为面心立方晶格,且衍射斑亮度较暗,可推知此选区仍然存在微量的残余奥氏体。与功率密度1.53 GW/cm2激光冲击处理后试样的TEM形貌像相比,1.98 GW/cm2激光冲击处理后,试样表面的珠光体形貌基本消失,渗碳体聚集在马氏体晶界处,位错明显增殖。

E690高强钢经过激光功率密度为2.77 GW/cm2冲击后的TEM形貌像和对应的电子衍射花样如图5所示。观察图5a可知,位错分布明显增殖,E690高强钢表层晶粒继续保持细化趋势,此时有更多的渗碳体组织融进晶体内部,此时晶粒尺寸分布在200 nm以内。图5b为图5a的电子衍射图,标定分析该选区为2个体心立方的衍射斑点,且晶带轴指数为[100]方向,可以判断这是由2个马氏体晶粒组成的。2套电子衍射花样的角度为6.4°,表明这2个晶粒经过剧烈塑性应变后形成了取向差。此外,通过图5b可以看出,衍射斑有不断向圆环状演化的趋势。与功率密度1.98 GW/cm2激光冲击处理后试样的TEM形貌像相比,经2.77 GW/cm2激光冲击处理后,E690高强钢试样表层的晶粒进一步细化。

E690高强钢经过激光功率密度为4.07 GW/cm2冲击后的TEM形貌像和对应的电子衍射花样如图6所示。从图6a可以观察到,经过此次冲击波加载后,材料中的第二相颗粒增多,一些渗碳体在晶粒内形成偏聚,晶粒尺寸分布在200~300 nm,没有持续细化。图6b为对应的选区电子衍射花样,根据标定可以看出,该区域仍然为2套标准的体心立方晶格,晶带轴指数为[111]方向,判断此处为仍然是2个马氏体晶粒组成。与功率密度2.77 GW/cm2激光冲击处理后试样的TEM形貌像相比,4.07 GW/cm2激光冲击处理后,试样表面的晶粒呈小角度晶界向大角度转化的趋势,2个晶粒的取向角差增大到7.4°。在此功率密度下进一步观察TEM形貌像,失稳分解组织发展成为均匀分散的两相结构,典型的明暗相间的波纹组织消失,如图6c所示。该形貌像特征表明该区域发生调幅分解。对该选区进行电子衍射分析(如图6d所示),选区内出现了卫星斑,由形貌像和选取电子衍射表明,激光在4.07 GW/cm2功率密度下调幅分解长大[23-26]。

图4 激光功率密度1.98 GW/cm2时的TEM形貌像和选区电子衍射图

图5 激光功率密度 2.77 GW/cm2时的TEM形貌像和选区电子衍射图

图6 激光功率密度4.07 GW/cm2时的TEM形貌像、选区电子衍射图、调幅分解和卫星斑

E690高强钢经过激光功率密度为5.09 GW/cm2冲击后的TEM形貌像和对应的电子衍射花样如图7所示。观察图7a可知,晶粒尺寸都在100 nm以内,表明E690高强钢晶粒细化至纳米级。根据图7b可以看出,其衍射花样为连续的同心环,说明晶粒在经受5.09 GW/cm2的强激光加载后,形成了分布均匀,取向随机的纳米晶[11,27]。

3.3 E690高强钢表层Ostwald熟化验证

随着激光能量的增大,其晶粒尺寸不断减小。当激光功率小于2.77 GW/cm2时,虽存在少量小晶粒,但在试样不同区域的TEM形貌像中并未观察到调幅分解和Ostwald熟化现象,说明界面能并不能支撑细小晶粒的迁移。当激光功率密度到达5.09 GW/cm2时,E690高强钢在极高塑性变形情况下形成细小均匀的纳米晶。细小脱溶物溶入较大的颗粒是发生Ostwald熟化现象的前提。由此可推知,当激光功率为5.09 GW/cm2时,试样表面的纳米晶不满足Ostwald熟化现象的条件。当功率密度为4.07 GW/cm2的激光冲击加载后,试样表面的TEM形貌像中观察到了失稳分解及Ostwald熟化,且只在该功率密度激光冲击处理后试样表面TEM形貌像中观察到了失稳分解及Ostwald熟化。

功率密度为4.07 GW/cm2的激光冲击加载后,试样的TEM形貌像如图8所示,其中图8b为图8a的暗场像。激光冲击促使E690高强钢试样因调幅分解内部产生沉淀相差异的不均匀结构,因成分梯度导致材料组织内应力的差异,从而导致系统Gibbs能增高[19,28-29]。观察图8可知,试样表面因调幅分解生成了众多细小的脱溶颗粒。为了减小系统能量,以及维持脱溶物与基体界面间的浓度平衡,细小脱溶晶粒a1、b1、c1、d1、e1、f1沿浓度梯度逐渐向大晶粒L移动。具体到粒子而言,伴随着小粒子不断向大晶粒L移动,导致小粒子脱溶物消失,以及大粒子L的尺寸长大。由此可知,在功率密度4.07 GW/cm2激光冲击加载后,试样表面产生了Ostwald熟化现象,与前文分析相符。

图7 激光功率密度5.09 GW/cm2时的TEM形貌像和选区电子衍射图

图8 功率密度4.07 GW/cm2下E690高强钢表面典型Ostwald熟化TEM像

1)对E690高强钢激光冲击过程中调幅分解现象的发生进行分析,探究了材料表层发生Ostwald熟化现象与激光功率密度之间的关系。通过对试验结果进行分析证明,激光冲击E690高强钢其表面存在Ostwald熟化现象,且激光冲击E690高强钢表面纳米化与Ostwald熟化相邻出现。

2)对激光加载后的E690高强钢形貌像进行分析,晶粒尺寸在4.07 GW/cm2功率密度下增大,其中明暗相间的条纹组织以及选区电子衍射存在卫星斑表明,在此功率密度下发生了调幅分解,进而使 E690高强钢材料表面发生Ostwald熟化现象。

3)E690高强钢经过激光冲击后,其表层材料在高应变率作用下使得Ostwald熟化现象和表面纳米化现象相邻出现,但Ostwald熟化转变成纳米晶过程有待进一步探究。此外,激光冲击波沿材料深度方向衰减,E690高强钢截面组织是否会发生Ostwald熟化现象也尚需考察。

[1] 吴志方, 吴润. 两相体系中第二相颗粒粗化的研究进展[J]. 材料导报, 2010, 24(15): 113-117.

WU Zhi-fang, WU Run. Research Development of Seco­ndary Phase Particle in Dual-Phase System[J]. Materials Review, 2010, 24(15): 113-117.

[2] 崔红保, 郭景杰, 苏彦庆, 等. Cu-Pb过偏晶合金颗粒生长和Ostwald熟化的相场法模拟[J]. 金属学报, 2007, 43(9): 907-912.

CUI Hong-bao, GUO Jing-jie, SU Yan-qing, et al. Phase Field Simulation of Particle Growth and Ostwald Ripe­ning for Cu-Pb Hypermonotectic Alloy[J]. Acta Metal­lurgica Sinica, 2007, 43(9): 907-912.

[3] 黄耀, 赵征志, 赵爱民, 等. 汽车大梁钢中第二相粒子析出行为[J]. 北京科技大学学报, 2013, 35(7): 882-889.

HUANG Yao, ZHAO Zheng-zhi, ZHAO Ai-min, et al. Precipitation Behavior of Secondary Phases in Automo­bile Beam Steel[J]. Journal of University of Science and Technology Beijing, 2013, 35(7): 882-889.

[4] 杨柯, 梁烨, 严伟, 等. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.

YANG Ke, LIANG Ye, YAN Wei, et al. Preferential Distribution of Boron and Its Effect on Microstructure and Mechanical Properties Of (9~12)%Cr Martensitic Heat Resistant Steels[J]. Acta Metallurgica Sinica, 2020, 56(1): 53-65.

[5] SUN Ru-jian, LI Liu-he, ZHU Ying, et al. Microstructure, Residual Stress and Tensile Properties Control of Wire- Arc Additive Manufactured 2319 Aluminum Alloy with Laser Shock Peening[J]. Journal of Alloys and Compounds, 2018, 747: 255-265.

[6] HUANG Shuai, ZHU Ying, GUO Wei, et al. Impact Tou­ghness and Microstructural Response of Ti-17 Titanium Alloy Subjected to Laser Shock Peening[J]. Surface and Coatings Technology, 2017, 327: 32-41.

[7] 曹宇鹏, 徐影, 冯爱新, 等. 激光冲击强化7050铝合金薄板表面残余应力形成机制的实验研究[J]. 中国激光, 2016, 43(7): 139-146.

CAO Yu-peng, XU Ying, FENG Ai-xin, et al. Experi­mental Study of Residual Stress Formation Mechanism of 7050Aluminum Alloy Sheet by Laser Shock Proces­sing[J]. Chinese Journal of Lasers, 2016, 43(7): 139-146.

[8] 曹宇鹏, 葛良辰, 冯爱新, 等. 冲击波传播方式对激光冲击7050铝合金残余应力分布的影响[J]. 表面技术, 2019, 48(6): 195-202.

CAO Yu-peng, GE Liang-chen, FENG Ai-xin, et al. Effect of Shock Wave Propagation Mode on Residual Stress Distribution of Laser Shock 7050 Aluminum Alloy[J]. Surface Technology, 2019, 48(6): 195-202.

[9] 曹子文, 杨清, 高宇. 激光冲击强化TC17钛合金室温和高温拉伸性能研究[J]. 表面技术, 2018, 47(3): 85-90.

CAO Zi-wen, YANG Qing, GAO Yu. Tensile Properties at Room and High Temperature of TC17 Titanium Alloy Treated by Laser Shock Peening[J]. Surface Technology, 2018, 47(3): 85-90.

[10] 陈浩天, 曹宇鹏, 花国然, 等. 激光冲击690高强钢表面残余应力工艺优化模拟[J]. 金属热处理, 2018, 43(10): 206-209.

CHEN Hao-tian, CAO Yu-peng, HUA Guo-ran, et al. Optimization and Simulation of Residual Stress on Surface Of690 High Strength Steel by Laser Shocking[J]. Heat Treatment of Metals, 2018, 43(10): 206-209.

[11] 曹宇鹏, 杨聪, 施卫东, 等. 激光冲击690高强钢位错组态与晶粒细化的实验研究[J]. 光子学报, 2020, 49(4): 31-42.

CAO Yu-peng, YANG Cong, SHI Wei-dong, et al. Expe­rimental Study on Dislocation Configuration and Grain Refinement of 690 High Strength Steel Treated by Laser Shock Processing[J]. Acta Photonica Sinica, 2020, 49(4): 31-42.

[12] 曹宇鹏, 蒋苏州, 施卫东, 等. E690高强钢表面激光冲击微造型的模拟与试验[J]. 中国表面工程, 2019, 32(5): 69-77.

CAO Yu-peng, JIANG Su-zhou, SHI Wei-dong, et al. Numerical Simulation and Experiment Micro-Dimple Array on E690 High-Strength Steel Surface Induced by Laser Shock Processing[J]. China Surface Engineering, 2019, 32(5): 69-77.

[13] 杨洪波, 王快社, 王庆娟, 等. GCr15轴承钢渗碳体球化的长大机制[J]. 材料热处理学报, 2012, 33(8): 79-83.

YANG Hong-bo, WANG Kuai-she, WANG Qing-juan, et al. Spheroidizing Growth Mechanism of Cementite in GCr15 Bearing Steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(8): 79-83.

[14] 尹鸿祥, 吴毅, 张关震, 等. 铁素体不锈钢中铜析出相的长大和晶体结构演化规律研究[J]. 稀有金属材料与工程, 2021, 50(2): 658-663.

YIN Hong-xiang, WU Yi, ZHANG Guan-zhen, et al. Growth and Crystal Structure Evolution of Copper Precipitate in Ferritic Stainless Steel[J]. Rare Metal Materials and Engineering, 2021, 50(2): 658-663.

[15] JIANG Chao-ping, ZHANG Li-xiang, CHEN Yong-nan, et al. Coarsening Behavior of the Ti2Cu Phase of a Ti- 14Cu Alloy during Isothermal Thermal Exposure[J]. Journal of Alloys and Compounds, 2021, 882: 160685.

[16] BADYKA R, SAILLET S, EMO J, et al. Effect of Ni, Mo and Mn Content on Spinodal Decomposition Kinetics and G-Phase Precipitation of Aged Model Cast Austenitic Stainless Steels[J]. Journal of Nuclear Materials, 2021, 555: 153123.

[17] 孙振岩, 刘春明. 合金中的扩散与相变[M]. 沈阳: 东北大学出版社, 2002.

SUN Zhen-yan, LIU Chun-ming. Diffusion and Phase Transformation in Alloys[M]. Shenyang: Northeast Uni­versity Press, 2002.

[18] 李亚强, 刘建华, 邓振强, 等. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.

LI Ya-qiang, LIU Jian-hua, DENG Zhen-qiang, et al. Peritec­tic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. Acta Metallurgica Sinica, 2020, 56(10): 1335-1342.

[19] 曹宇鹏, 陈浩天, 冯爱新, 等. 激光冲击7050-T7451铝合金表面的X射线衍射图谱与微结构的相关性[J]. 中国激光, 2018, 45(5): 61-67.

CAO Yu-peng, CHEN Hao-tian, FENG Ai-xin, et al. Corre­la­tion between X-Ray Diffraction Pattern and Mic­rostructure of Laser Shock Processed 7050-T7451 Alumi­num Alloy Surface[J]. Chinese Journal of Lasers, 2018, 45(5): 61-67.

[20] 宋宝来. 四方和六方晶系基本特征平行四边形表的统一及电子衍射花样的标定分析与改进[D]. 湘潭: 湘潭大学, 2007.

SONG Bao-lai. Studies on the Characteristic Parallelo­gram Grid in Square System and Hexagonal Crystal Sys­tem and the Improvement of the Electron Diffraction Pat­tern Demarcating[D]. Xiangtan: Xiangtan University, 2007.

[21] 黄孝瑛. 透射电子显微学[M]. 上海: 上海科学技术出版社, 1987.

HUANG Xiao-ying. Transmission Electron Microscopy[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987.

[22] FU Hui, YUAN Shu-qing, SUN Wan-ting, et al. A Novel Atomic Movement Mechanism of Intersection-Induced BCT-α → BCC-Α" Martensitic Phase Transformation[J]. Scripta Materialia, 2021, 204: 114153.

[23] KHERADMANDFARD M, KASHANI-BOZORG S F, KANG K H, et al. Simultaneous Grain Refinement and Nanoscale Spinodal Decomposition of β Phase in Ti-Nb- Ta-Zr Alloy Induced by Ultrasonic Mechanical Impacts[J]. Journal of Alloys and Compounds, 2018, 738: 540-549.

[24] 郭翠萍, 訾建玲, 李长荣, 等. Zr-Nb合金调幅分解组织的研究[J]. 稀有金属, 2017, 41(6): 672-677.

GUO Cui-ping, ZI Jian-ling, LI Chang-rong, et al. Spino­dal Decomposition Microstructure in Zr-Nb Alloys[J]. Chinese Journal of Rare Metals, 2017, 41(6): 672-677.

[25] SUN L Y, VASIN R N, ISLAMOV A K, et al. Influence of Spinodal Decomposition on Structure and Thermoela­stic Martensitic Transition in MnCuAlNi Alloy[J]. Mate­rials Letters, 2020, 275: 128069.

[26] LACH T G, COLLINS D A, BYUN T S. Evolution of the Role of Molybdenum in Duplex Stainless Steels during Thermal Aging: From Enhancing Spinodal Decomposi­tion to Forming Heterogeneous Precipitates[J]. Journal of Nuclear Materials, 2021, 557: 153268.

[27] 胡兰青, 马晋芳, 许并社. Al-Zn-Mg合金的表面纳米晶化及其热稳定性研究[J]. 材料热处理学报, 2007, 28(S1): 343-347.­

HU Lan-qing, MA Jin-fang, XU Bing-she. Surface Nano­crystallization of Al-Zn-Mg Alloy and Its Thermal Stabi­lity[J]. Transactions of Materials and Heat Treatment, 2007, 28(S1): 343-347.

[28] AN Dong, PAN Shi-yan, REN Qing-qiang, et al. A Gibbs Energy Balance Model for the Isothermal Ferrite-to- Austenite Transformation[J]. Scripta Materialia, 2020, 178: 207-210.

[29] PELEGRINA J L, GENNARI F C, CONDÓ A M, et al. Predictive Gibbs-Energy Approach to Crystalline/Amorp­hous Relative Stability of Nanoparticles: Size-Effect Cal­culations and Experimental Test[J]. Journal of Alloys and Compounds, 2016, 689: 161-168.

Experimental Study on Ostwald Ripening of E690 High Strength Steel Treated by Laser Shock Peening

1,1,2,3,1,1,1

(1. College of Mechanical Engineering, Nantong University, Jiangsu Nantong 226019, China; 2. 3D Printing Technology Research Institute, Nantong Institute of Technology, Jiangsu Nantong 226001, China; 3. Nantong COSCO Shipyard Co. Ltd, Jiangsu Nantong 226006, China)

Laser shock peening is a surface modification technology with great potential and application prospect. Given the extremely short loading time (ns) and extremely large load (GPa) of laser shock peening, samples undergoing laser shock treatment exhibited spinodal decomposition without nucleation, which induced Ostwald ripening phenomenon. Compared with the Ostwald ripening phenomenon caused by heat treatment, the impact phase transition caused by laser shock peening is more complex. Therefore, researching the Ostwald ripening phenomenon induced by laser shock peening has certain theoretical significance for laser shock strengthening technology.

Based on the theoretical analysis of the internal relationship between laser shock metal materials and spinodal decomposition, the conditions required for Ostwald ripening due to laser shock strengthening are put forward. The surface microstructure and selected electron diffraction patterns of E690 high-strength steel samples following laser shock were observed by using field-induced transmission electron microscopy (TEM). The variation characteristics of microstructure in TEM morphology of the sample surface following laser shock treatment at different power densities were obtained, and the Ostwald ripening phenomenon was verified. The specific experimental process and parameters are as follows: E690 high strength steel was cut into 50 mm×50 mm×5.5 mm rectangular block, which was then designed as the sample, and 240-1200# sandpaper was applied to grind the front and back sides of the sample until the thickness was 5 mm. The machine used for laser shock test was Nd: YAG (SGR series, beamtech company, China). The absorption layer was 150 μm thick aluminum foil, and the constraint layer was deionized water. The specific parameters of laser shock were: pulse width 10 ns, wavelength 1,064 nm and spot diameter 5 mm. Using 3, 3.89, 5.43, 8 and 10J laser energy respectively, the corresponding laser power densities were 1.53, 1.98, 2.77, 4.07 and 5.09 GW/cm2. The lap rate was 70%, and the impact times was once. The laser shock area of E690 high strength steel was cut by wire, and the cut sample was pre-thinned from the substrate side, then it was ground in a recess and finally ion-thinned, eventually made into the TEM sample. The micro morphology and selected area electron diffraction of the sample surface were observed by transmission electron microscopy (TECNAI G2 F20, FEI, USA).

As can be seen from the TEM image, the matrix of E690 high strength steel was pearlite morphology formed by alternating overlap of ferrite layer and cementite layer; when the laser power density was weak, the E690 high strength steel material continued to refine under the action of laser shock peening. In the meantime, the thin layer cementite gradually melted into ferrite and disappeared, and the electron diffraction pattern gradually changed into a ring shape. E690 high strength steel gradually changed from pearlite to martensite. However, when the laser power density increased to 4.07 GW/cm2, the continuously refined material was coarsened, the spinodal decomposition structure appeared. The satellite spots appeared in the selected area electron diffraction pattern, and the Ostwald ripening occurred on the surface of E690 high strength steel; when the laser power density reached 5.09 GW/cm2, geometric dislocations divided the whole large grain into finer grains, nanocrystals were produced on the surface of E690 high strength steel.

In conclusion, when the laser power density was 4.07 GW/cm2, Ostwald ripening occurred on the surface of E690 high strength steel due to spinodal decomposition; neither weak nor strong power density can make the precipitate reach the critical radius of Ostwald ripening mechanism; in the experiment, the laser power density required for Ostwald ripening phenomenon is close to the laser power density required for nanocrystals.

laser shock peening; Ostwald ripening; E690 high strength steel; grain refinement; microstructure

2021-09-07;

2021-11-15

XIE Peng-peng (1997-), Male, Postgraduate, Research focus: laser processing.

曹宇鹏(1981—),男,博士,副教授,主要从事激光加工检测技术的研究。

CAO Yu-peng (1981-), Male, Doctor, Associate professor, Research focus: laser processing and testing technology research.

解朋朋, 曹宇鹏, 花国然, 等.激光冲击E690高强钢Ostwald熟化现象的试验研究[J]. 表面技术, 2022, 51(9): 371-378.

TN249

A

1001-3660(2022)09-0371-08

10.16490/j.cnki.issn.1001-3660.2022.09.000

2021–09–07;

2021–11–15

国家自然科学基金(51505236,51979138,52109106);
江苏省博士后科研资助计划(2021K606C);
国家重点研发计划(2019YFB2005300);
国家高技术船舶科研项目(工信部装函[2019]360号)

Fund:The National Natural Science Foundation of China (51505236, 51979138, 52109106); The Jiangsu Planned Projects for Postdoctoral Research Funds (2021K606C); The National Key Research and Development Program of China (2019YFB2005300); National High-tech Ship Scientific Research Project of China (MIIT [2019]360)

解朋朋(1997—),男,硕士研究生,主要研究方向为激光加工。

XIE Peng-peng, CAO Yu-peng, HUA Guo-ran, et al. Experimental Study on Ostwald Ripening of E690 High Strength Steel Treated by Laser Shock Peening[J]. Surface Technology, 2022, 51(9): 371-378.

责任编辑:刘世忠

猜你喜欢 功率密度高强形貌 铁矿渣高强海绵砖配合比设计建材发展导向(2022年20期)2022-11-03“最田园”的乡村形貌——守护诗意乡土当代陕西(2018年9期)2018-08-29校园霾科技资讯(2017年24期)2017-09-15飞机电磁辐射评估方法科技与创新(2017年10期)2017-06-07一种含钨的高强钛合金有色金属材料与工程(2016年6期)2017-05-31He—Ne激光辐照种子光强的研究与设计新农业(2017年4期)2017-05-12大功率IGBT多模架精密陶瓷管壳简述现代商贸工业(2016年14期)2016-12-27镀锌产品表面腐蚀现象研究科学与财富(2016年28期)2016-10-14SAC/Cu及 SAC—Bi—Ni/Cu回流焊界面金属间化合物演变哈尔滨理工大学学报(2015年5期)2016-01-19丢啥也别丢魂故事会(2015年21期)2015-11-17推荐访问:熟化 激光 冲击
上一篇:“双碳”背景下钢铁行业供应链的发展及风险探究
下一篇:腹腔镜手术治疗肥厚性幽门狭窄围手术期相关并发症的临床分析

Copyright @ 2013 - 2018 优秀啊教育网 All Rights Reserved

优秀啊教育网 版权所有